LA-UR-13-26748

Approved for public release; distribution is unlimited.

Title: Physics Beyond the Standard Model through Neutron Beta Decay

Author(s): Broussard, Leah J.

Intended for: P-25 Summer Seminar Series

Issued: 2013-08-28

Disclaimer:

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Los Alamos National Laboratory

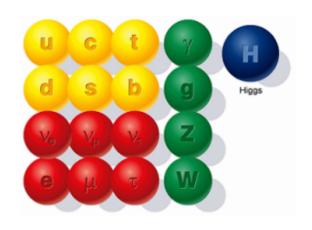
August 28, 2013

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons


Experiment

Detectors

Data Acquisition

The Standard Model (and Beyond)

Some curiosities

- Lots of "Why?" questions
 - Why 3 generations?
 - Why so many parameters?
 - Why these masses?
 - Why left-handed weak interaction?
- What is Dark Matter?
- Why so much matter?
- Where is gravity?
- And more...

Finding the missing pieces

- High Energy frontier (LHC) vs. Precision frontier (beta decay)
- High energy: Direct search for heavy particles
- Precision: Measure deviations from SM
- Complementary limits

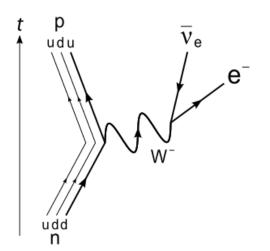
Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experimen


Detectors

Data Acquisition

Neutron Decay

- Semileptonic charged weak interaction
- Standard Model: V A form
- $\tau_n \approx 15$ minutes

Decay Distribution

Observables: effective correlations coefficients

$$egin{aligned} rac{d\Gamma}{dE_e d\Omega_e d\Omega_
u} &\propto w(E_e)(1+rac{m_e}{E_e} \overline{b} + \overline{a}(E_e)rac{ec{p}_e \cdot ec{p}_
u}{E_e E_
u} \ &+ \overline{A}(E_e)rac{ec{\sigma}_n \cdot ec{p}_e}{E_e} + \overline{B}(E_e)rac{ec{\sigma}_n \cdot ec{p}_
u}{E_
u} + \cdots) \end{aligned}$$

Testing the Standard Model

- **A**, $\mathbf{a} + \tau_n \rightarrow V$, A interactions $(V_{ud}, RL \text{ symmetry}, \ldots)$
- \mathbf{B} , $\mathbf{b} \to \mathsf{S}$, T interactions (BSM interactions, MSSM, ...)

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

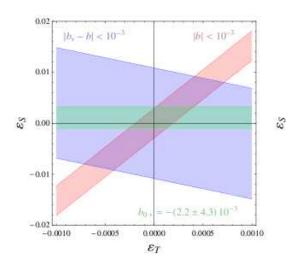
Motivation

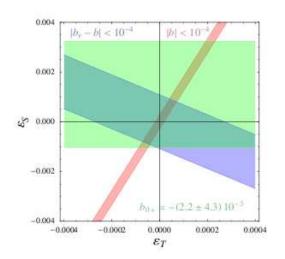
Ultracold Neutrons

Experiment

Detectors

Data Acquisition




Motivation¹

- S, T interactions appear at linear order in B, b
- Presence of S, T interactions at 10^{-3} indicate BSM physics

10^{-3} level precision

10⁻⁴ level precision

- Assume no uncertainty on $g_{S,T}$
- Green band from superallowed $0^+ \rightarrow 0^+$ decays, red band from b, blue band from B

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

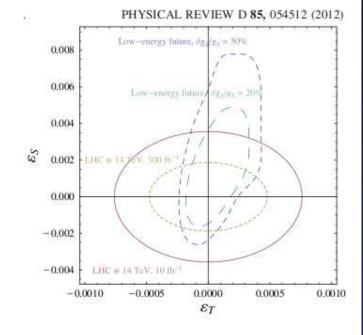
Motivation

Ultracold Neutrons

Experimen

Detectors

Data Acquisition



¹Phys.Rev.D **85**, 054512 (2012)

Motivation

System Comparison: Extracting ϵ_{S} , ϵ_{T}

- Current limits from $0^+ \rightarrow 0^+$ decays, LHC not yet competitive
- LHC upgrade: complementary to 10^{-3} level B, b measurements
- 10⁻⁴ level measurements: unmatched discovery potential!

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors

Data Acquisition

Summary

Status of B

- $B = 0.9807 \pm 0.0030(0.3\%)$ (PDG 2008)
- polarized cold neutron experiments
- \bullet GOAL: \sim 0.1% measurement, establish feasibility of 0.01% measurement

Ultracold Neutrons

Class	Energy	Source
Fast	> 1 MeV	Fission reactions / Spallation
Slow	eV – keV	Moderation
Thermal	0.025 ev	Thermal equilibrium
Cold	μ eV – meV	Cold moderation
Ultracold	\leq 300 neV	Downscattering

How cold is Ultracold?

- Temperature < 4 mK
- Velocity < 8 m/s
- Usain Bolt ~ 12 m/s

UCN can be bottled

- Gravitational (V = mgh): 100 neV / meter
- Magnetic ($V=-\vec{\mu}\cdot\vec{B}$): 60 neV / Tesla

$$\bullet \ \, \text{Material} \ \, \left(V = \frac{2\pi\hbar^2 \textit{Nb}}{\textit{m}}\right) \, \left\{ \begin{array}{ll} ^{58}\text{Ni} : & 335 \text{ neV} \\ \text{DLC} : & 250 \text{ neV} \\ \text{BeO} : & 250 \text{ neV} \\ \text{Cu} : & 170 \text{ neV} \end{array} \right.$$

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experimen

Detectors

Data Acquisition

Ultracold Neutrons vs. Cold Neutrons

Features of CN experiments

- "Beam" of neutrons
- High polarization using supermirror
- Higher neutron generated background
- Ambient (reactor) background
- High decay rates

Features of UCN experiments

- Defined decay volume
- 100% polarized using magnetic fields; limited depolarization due to material surfaces
- Small neutron-generated backgrounds
- Pulsed beam: limits backgrounds
- Limited statistics

Physics Beyond the Standard Model through Neutron Beta Decay

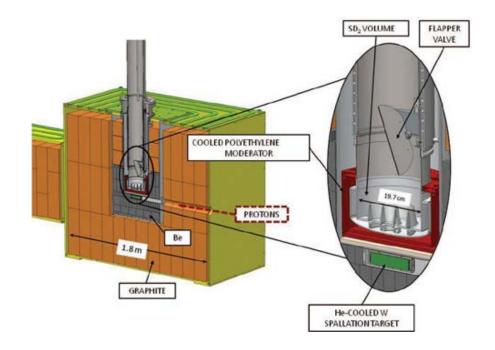
Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors


Data Acquisition

UCN Production

The LANSCE UCN Source¹

- 800 MeV proton beam + tungsten target \rightarrow spallation neutrons
- Single scatter in solid deuterium: CN→UCN + phonon
- Remove phonons: SD₂ cooled to 4K
- "Flapper" valve shields UCN from SD₂
- High density at shield wall: 50 UCN/cc
- Pulsed beam: Low background

¹Rev. Sci. Instrum. 84, 013304 (2013)

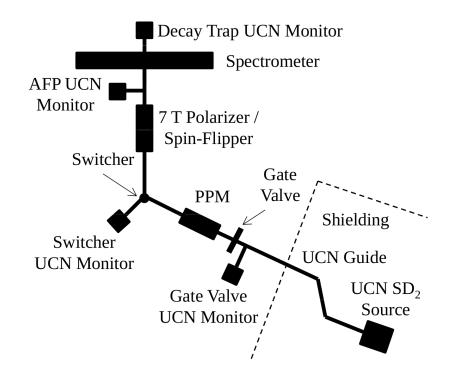
Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment


Detectors

Data Acquisition

Experimental Area B

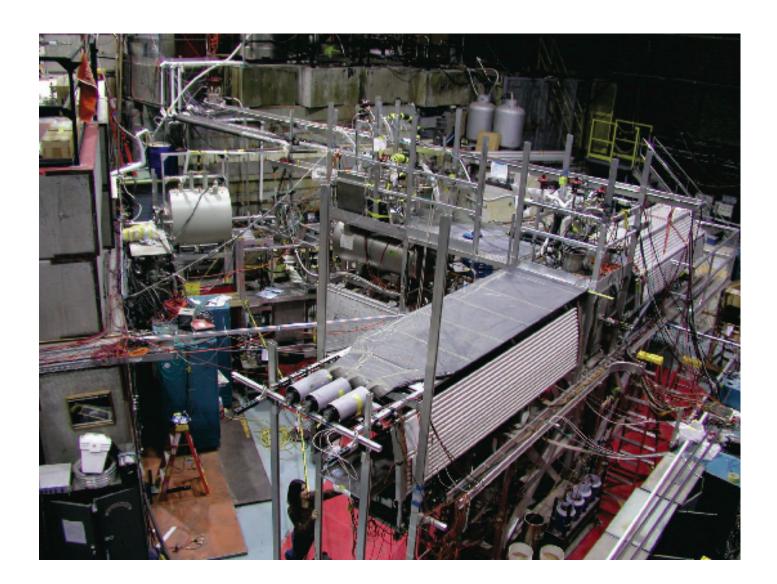
- DLC-coated quartz and copper UCN guides
- 7 T Polarizer: > 99.5% UCN polarization
- AFP spin flipper
- 1 T electron spectrometer

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons


Experiment

Detectors

Data Acquisition

Experimental Area B

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

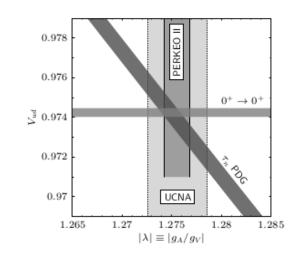
Motivation

Ultracold Neutrons

Experimen

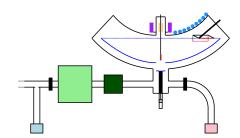
Detectors

Data Acquisition



UCN Experiments at Area B

UCNA: neutron β -asymmetry²


- "Flagship" experiment
- First measurement of A using UCN
- Latest result $A_0 = -0.11954(112)$, used to determine $\lambda = g_A/g_V = -1.2756(30)$

• $\lambda + \tau$ can extract V_{ud} , test CKM unitarity

UCN τ : neutron decay lifetime

- Recent measurements inconsistent
- New experiment: magneto-gravitational trap
- Successful test of prototype trap: ~ 10 hr storage time

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

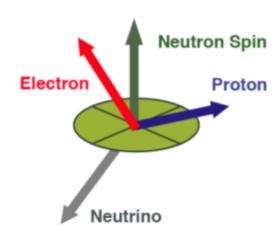
Experiment

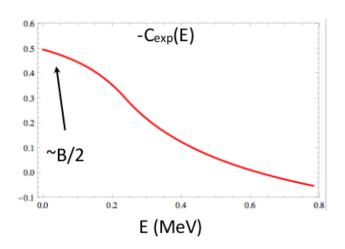
Detectors

Data Acquisition

²Phys. Rev. C 87, 032501(R) (2013)

UCNB: Antineutrino Asymmetry B


Extracting B


- 3-body decay: Detect proton & beta in coincidence
- Count $N^{\beta p}=N^{\pm\pm}=$ aligned vs. antialigned with σ_n

•
$$B_{exp}(E) = \frac{N^{--}(E) - N^{++}(E)}{N^{--}(E) + N^{++}(E)}$$

•
$$C_{exp}(E) = \frac{(N^{++}(E)-N^{-+}(E))-(N^{+-}(E)-N^{--}(E))}{(N^{++}(E)-N^{-+}(E))+(N^{+-}(E)-N^{--}(E))}$$

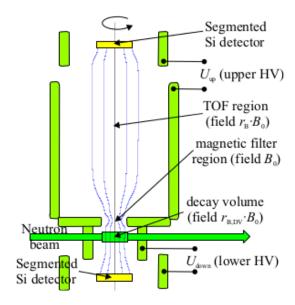
• Statistical sensitivity $\frac{\delta B}{B}=\frac{2.9}{\sqrt{N}}$: 1 month to reach 10^{-3} level at 10Hz decay rate

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons


Experiment

Detectors

Data Acquisition

Partnership with Nab

- Experiment planned for Spallation Neutron Source at Oak Ridge National Laboratory
- Will measure **a**, the electron-neutrino correlation, and **b**, the Fierz interference term
- No polarized neutron requirement
- ullet a has similar sensitivity to λ as ${\bf A}$
- **b** should be zero in the Standard Model
- Similar experimental/detector requirements as UCNB

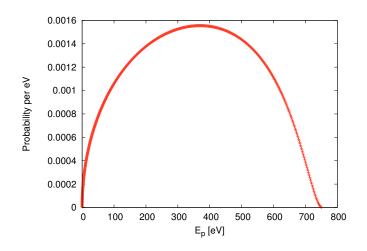
Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

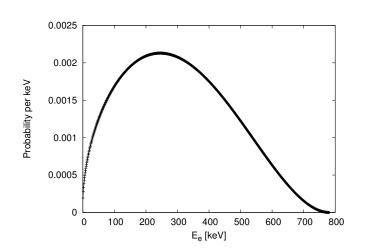
Motivation

Ultracold Neutrons

Experiment


Detectors

Data Acquisition


CHALLENGE: Detecting protons and betas

Proton Energy Spectrum

- max E < 800 eV
- slow timing: 10 μ s to 1 ms after decay
- Very low energy: detector deadlayer important

Electron Energy Spectrum

- max E \approx 800 keV
- fast timing: 10 ns
- problem: backscattering
 → partial energy signal

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors

Data Acquisition

System Requirements

Detect Protons

- Bias detector to \sim 30 kV: accelerate protons
- Thin deadlayer to minimize energy loss
- Very low noise required: cool to LN₂ temperatures

Detect Electrons

- Backscattering probability on silicon very high
- Fast timing to resolve backscattered events

Detect Coincidences

- 1 T Magnetic field operation: guide charge particles to detectors
- Proton, electron maximum Larmor radius \approx 4 mm
- Check coincidence in adjacent pixels

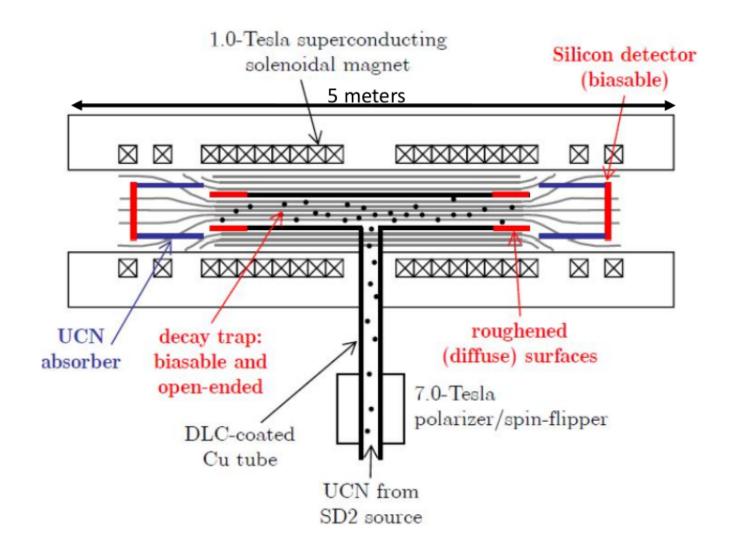
Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment


Detectors

Data Acquisition

Experimental Approach

- UCN bottled in decay trap
- Protons/Electrons guided by 1 T field to Detectors
- Detectors biased -30kV to accelerate protons
- Entire DAQ biased with detectors

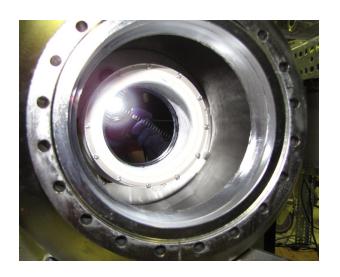
Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment


Detectors

Data Acquisition

Large area silicon detectors

Junction Side (charged particle entry)

Ohmic Side (Electronics)

- 12 cm diameter active area, 2 mm thick
- Hexagonal array of 128 pixels, each 0.8 cm² area
- p-type implant minimizes "deadlayer"
- ullet Metallized Al mesh o improve charge collecting time
- Detect both protons and betas

Physics Beyond the Standard Model through Neutron Beta Decay

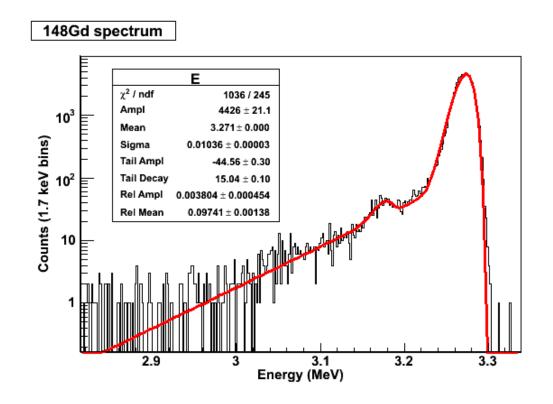
Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors


Data Acquisition

Single pixel characterization - Using α particles

¹⁴⁸Gd source

- Single alpha peak at 3.271 MeV
- Warm detector + simple DAQ: 10 keV resolution
- Effect of Al mesh observed
- Extract deadlayer=100±20 nm

Physics Beyond the Standard Model through Neutron Beta Decay

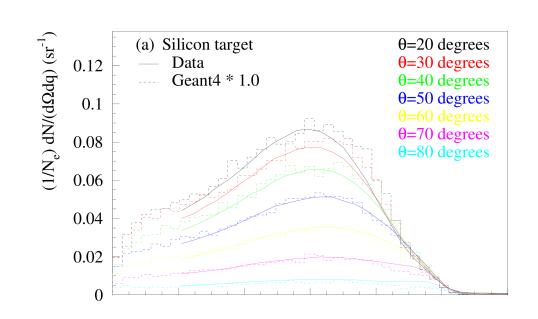
Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors


Data Acquisition

Electron Backscattering

- High backscatter probability: small mass m_e , high Z of silicon
- $\left(\frac{d\sigma}{d\Omega}\right)_R \propto \left(\frac{Ze^2}{2\mu v^2 sin^2(\frac{\theta}{2})}\right)^2$
- Minimize effect: detectors mounted in low field region
- Fast data acquisition allows time resolution and correction of backscatter events

Martin et al 2003

Physics Beyond the Standard Model through Neutron Beta Decay

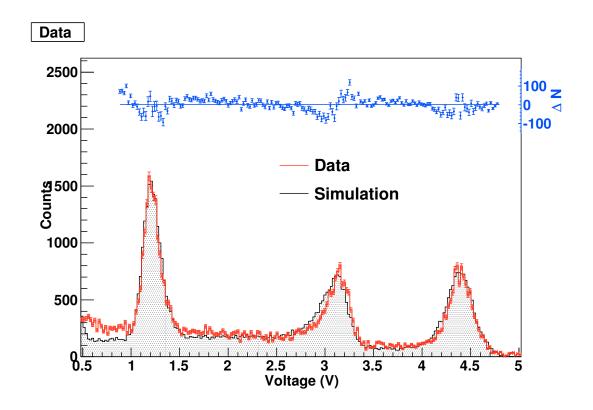
Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors


Data Acquisition

Detector characterization

¹⁰⁹Cd source

- \bullet Expect X-rays at \sim 23 keV, Auger electrons at 63 keV and 84 keV
- detector geometry simulated using PENELOPE

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

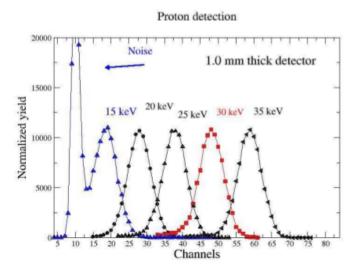
Motivation

Ultracold Neutrons

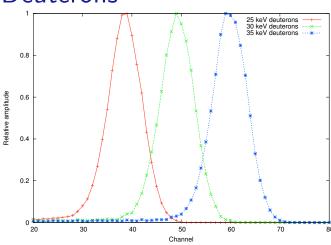
Experiment

Detectors

Data Acquisition



Proton detection


TUNL mini proton beam

- TUNL accelerator: proton energies from 10 keV to 60 keV
- ullet 1 mm Si detector cooled to \sim -15 $^{\circ}$ C
- <20 keV protons resolvable
- $\sim 1.5 \text{ keV}$ silicon equivalent energy resolution
- ullet Deadlayer measured using protons: 100.4 \pm 2.3 nm
- ullet Deadlayer measured using deuterons: 93.7 \pm 16.0 nm

Protons

Deuterons

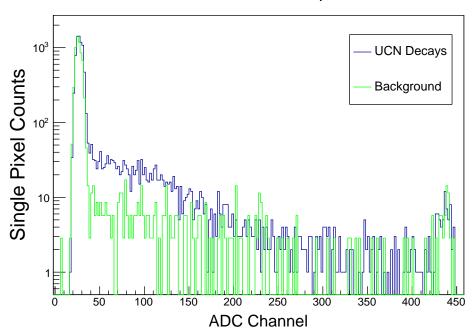
Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experimen


Detectors

Data Acquisition

UCN beta decay measurement (ongoing)

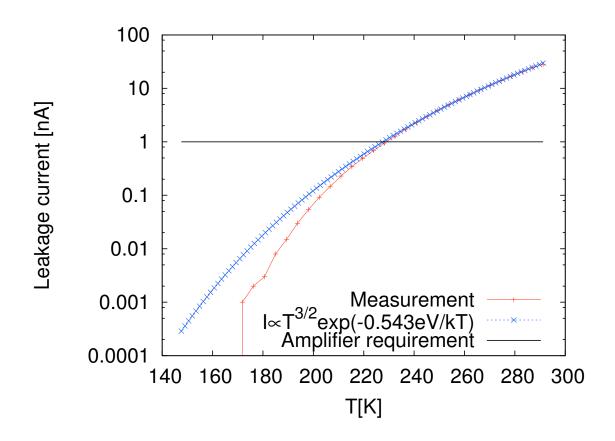
- Beta spectrum from neutron decay
- 1 mm "Test" (higher noise) detector
- 5 hours of beta-decay, 2 hours background
- Current rates $\sim 0.1 \; \text{Hz/pixel}$

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons


Experiment

Detectors

Data Acquisition

Leakage current

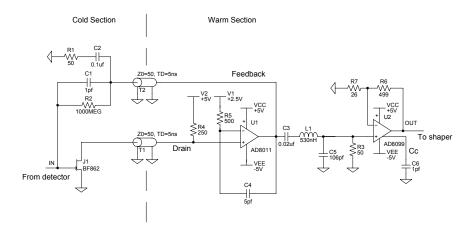
- Leakage current is function of detector temperature
- ullet Effectively zero at T < 180 K
- ullet Amplifier can operate ideally with FET at T < 220 K

Physics Beyond the Standard Model through Neutron Beta Decay

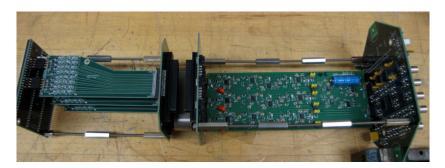
Leah Broussard

Motivation

Ultracold Neutrons


Experiment

Detectors


Data Acquisition

Amplifier design

- Custom design (Pat McGaughey and Jacqueline Mirabal)
- ullet FET mounted at detector, separated from rest of amplifier ullet avoid pickup noise
- Cool detector + FET assembly to LN $_2$ temperatures: FET at ${\sim}100$ K \rightarrow avoid thermal noise
- Minimum rise time ~ 5 ns
- Theoretical noise $\sim 1.3~{\rm keV}$
- Up to 24 ch per detector

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors

Data Acquisition

Waveform Digitizers

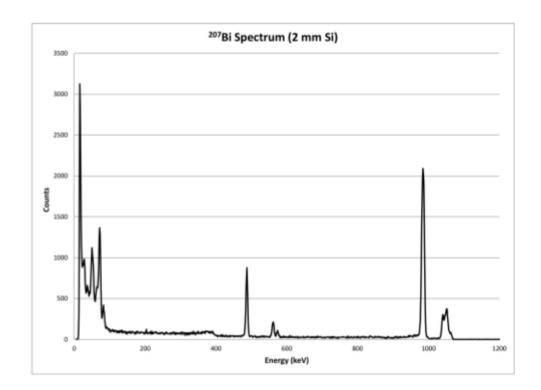
- 250 MHz: take advantage of fast timing
- Custom 8 channel, 12 bit FADCs
- Testing filter algorithms for improved resolution, noise discrimination
- MIDAS DAQ software package used to acquire events

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons


Experiment

Detectors

Data Acquisition

Noise Characterization

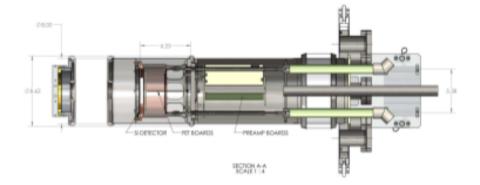
- 2 mm detector, 100 K temperature
- 207 Bi β source
- On the test bench: energy resolution \sim 2 keV = 2 \times theoretical noise
- ullet In the lab: energy resolution \sim 2.5 keV

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

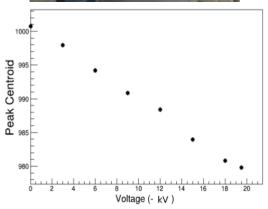
Motivation

Ultracold Neutrons


Experiment

Detectors

Data Acquisition


Improved Biased Detector Apparatus

- Full DAQ biased: detector, amps, digitizers
- Fiber from DAQ to computers
- Apparatus tested to -36 kV with detector surrogate
- Data taken at up to

 20 kV, 1 T field, with
 working detector
- New bias cage for DAQ now being installed

²⁰⁷Bi source (976 keV peak)

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors

Data Acquisition

Current Status

Summary

- System capable of detecting < 20 keV protons
- Beam is on! Now detecting betas from neutron decay
- Some tuning to eliminate accelerator noise required
 - Gains from improved shielding, isolation, passive filtering, digitized event processing

Coming soon

- Instrument full 24 channels
- First detection of protons from neutron β -decay
- First detection of proton-electron coincidences
- Study timing, energy, angle-effects using dedicated sources
- Preliminary goal: 0.1% statistical uncertainty
- Evaluate requirements for 0.01% uncertainty measurement

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experimen

Detectors

Data Acquisition

Collaboration List

Los Alamos National Laboratory

L. Broussard, M. Makela, P. McGaughey, J. Mirabal, C. Morris, J. Ramsey, A. Saunders, S. Sjue, J. Wang, S. Wilburn, T. Womack

Caltech

C. Feng, B. Filippone, K. Hickerson

North Carolina State University

A. T. Holley, J. Hoagland, R. Pattie, B. VornDick, A. Young, B. Zeck

University of Kentucky

S. Hasan, B. Plaster

University of Virginia

A. Bacci, S. Baessler

Virginia Tech

D. Bravo, X. Ding, R. B. Vogelaar

Physics Beyond the Standard Model through Neutron Beta Decay

Leah Broussard

Motivation

Ultracold Neutrons

Experiment

Detectors

Data Acquisition